Invited Paper Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis'
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
روشهای بازنمونهگیری بوت استرپ و جک نایف در تحلیل بقای بیماران مبتلا به تالاسمی ماژور
Background and Objectives: A small sample size can influence the results of statistical analysis. A reduction in the sample size may happen due to different reasons, such as loss of information, i.e. existing missing value in some variables. This study aimed to apply bootstrap and jackknife resampling methods in survival analysis of thalassemia major patients. Methods: In this historical coh...
متن کاملComparison of Bootstrap and Jackknife Variance Estimators in Linear Regression: Second Order Results
In an extension of the work of Liu and Singh (1992), we consider resampling estimates for the variance of the least squares estimator in linear regression models. Second order terms in asymptotic expansions of these estimates are derived. By comparing the second order terms, certain generalised bootstrap schemes are seen to be theoretically better than other resampling techniques under very gen...
متن کاملInference for Health Econometrics: Inference, Model Tests, Diagnostics, Multiple Tests, and Bootstrap
This paper presents a brief summary of classical statistical inference for many commonly-used regression model estimators that are asymptotically normally distributed. The paper covers Wald con dence intervals and hypothesis tests based on robust standard errors; tests of model adequacy and model diagnostics; family-wise error rates and false discovery rates that control for multiple testing; a...
متن کاملThe jackknife's edge: Inference for censored regression quantiles
For censored data, it is very common for the tail of the survival function to be non-identifiable because of the abundance of censored observations in the tail. Thus, if bootstrap methods are needed, they may perform poorly near the point of non-identifiability because of the variability in bootstrap samples. Since jackknife methods provide much less variability, they should provide better cove...
متن کاملCan we trust the bootstrap in high-dimension?
We consider the performance of the bootstrap in high-dimensions for the setting of linear regression, where p < n but p/n is not close to zero. We consider ordinary least-squares as well as robust regression methods and adopt a minimalist performance requirement: can the bootstrap give us good confidence intervals for a single coordinate of ? (where is the true regression vector). We show throu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008